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The objective of this study was to determine whether the risk of mortality from infectious disease in
harbor porpoise in U.K. waters increased with high exposure to polychlorinated biphenyls (PCBs),
using a case—control study design. This is the first time that data from a long-term marine mammal
strandings scheme have been used to estimate any increase in risk. The exposure odds ratio (OR)
from a logistic regression model with infectious disease deaths as cases and physical trauma deaths
as controls, after controlling for the effect of confounding factors, was 1.048 [95% confidence
interval (CI), 1.02-1.07]. To further adjust for the difference in energetic status between cases and
controls and account for the negative relationship between PCBs (sum of 25 chlorobiphenyl con-
geners) and blubber mass, we also “standardized” the blubber PCBs to an optimal blubber mass.
This lowered the OR to 1.02 (95% CI, 1.00-1.03). Thus, for each 1 mg/kg increase in blubber
PCBs, the average increase in risk of infectious disease mortality was 2%. A doubling of risk
occurred at approximately 45 mg/kg lipid. In this study, we have endeavored to avoid selection bias
by using controls that died of physical trauma as representative of the exposure prevalence in the
population that gave rise to the cases. In addition, we controlled for the effect of variation in ener-
getic status among the cases and controls. However, as with case—control studies in human and vet-
erinary epidemiology, unforeseen misclassification errors may result in biased risk estimates in
either direction. Key words: cetaceans, dose response, immunosuppression, PCBs, risk assessment.
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Many studies have reported an association
between immune suppression or infectious
disease and exposure to polychlorinated
biphenyls (PCBs) in laboratory animals,
humans, and wildlife (Bernhoft et al. 2000;
De Swart et al. 1996; Jepson et al. 2005;
Kimbrough 1987; Schwacke et al. 2002; Vos
et al. 2000). Because marine mammals are at
the top of the food chain and have large lipid
stores, they accumulate high levels of PCBs in
their blubber (Aguilar et al. 2002; Hansen
et al. 2004; Ross et al. 2000). Some small
species of seal or porpoise may therefore pro-
vide potentially useful mammalian models of
PCB-induced toxic effects. Although from a
toxicologic perspective it is not possible to
carry out controlled exposure experiments on
captive marine mammals, population-based
epidemiologic studies to determine the risk of
specific outcomes after exposure to potential
causal agents, such as PCBs, can be employed.
By applying epidemiologic principles to stud-
ies on wildlife, relative risk estimates for spe-
cific exposure-response hypotheses can be
obtained. Such studies are widely used in
human and veterinary medicine (Khoury and
Beaty 1994; Pike et al. 1975; Shapiro 1989)
but have received scant attention in relation to
wildlife. This is understandable given the
logistical difficulties in obtaining long-term
disease and exposure data, particularly in
marine mammals, which spend most or all of
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their lives at sea. Follow-up (cohort) studies
might be possible for a limited number of
species that are subject to long-term longitudi-
nal studies, but case—control studies can be
implemented on a wider variety of species and
populations. In this study, we demonstrate the
use of this approach to estimate the risk of
infectious disease death from exposure to
PCBs in a marine mammal, using a long-term
data set on harbor porpoises in U.K. waters.
Since the late 1980s, the link between per-
sistent organic pollutant (POP) exposure [e.g.,
PCBs, dichlorodiphenyltrichloroethane
(DDT), and chlorinated pesticides] and
immunosuppression in marine mammals has
received considerable attention (Aguilar and
Borrell 1994a; Beckmen et al. 2003; Bernhoft
et al. 2000; De Guise et al. 1995; De Swart
etal. 1996; Hall et al. 1992, 1997; Jepson et al.
1999, 2005; Kuiken et al. 1994; Lahvis et al.
1995; Lie et al. 2004, 2005; Ross et al. 1995,
1996). A number of mass mortalities from
infectious diseases in a variety of species world-
wide (Aguilar and Borrell 1994b; Dietz et al.
1989; Geraci 1989; Jensen et al. 2002) height-
ened interest in the relationship between POPs
and immune function. Laboratory studies had
already shown these contaminants to be
immunosuppressive in a wide variety of species
(Dean et al. 1982, 1985). By the 1990s, evi-
dence for a correlation between high blubber
levels of POPs, particularly PCBs, in marine

mammals and mortality from infectious disease
was accumulating. For example, in cetaceans,
Aguilar and Borrell (1994b) found that striped
dolphins that died during the 1990 morbilli-
virus epidemic in the Mediterranean Sea had
significantly higher PCBs in their blubber
than did animals sampled outside the epi-
demic (median, 282 mg/kg lipid weight in
1987-1989 and 1991 vs. 778 mg/kg lipid
weight in 1990). Similar results had also been
seen during the 1987-1988 bottlenose dolphin
die-off (Kuehl et al. 1991) and during the 1988
European phocine distemper virus epidemic
among harbor seals (Hall et al. 1992).

Further evidence for specific immune
function effects of POP exposure in cetaceans
came from n vitro studies. Lahvis et al. (1995)
assessed lymphocyte proliferative responses to
mitogen stimulation in five bottlenose dol-
phins with a range of PCB and DDT blood
levels. Significant negative correlations were
found, particularly in two animals with blood
PCB levels of > 700 ng/g wet weight, whose
proliferative responses were < 50% of that of
the other three animals. However, age effects
were not accounted for in this study. Similarly,
beluga whale (Delphinapterus leucas) splenocyte
proliferative responses were significantly
reduced after exposure to mixtures of PCB and
DDT congeners at levels 5-25 pg/g wet
weight (De Guise et al. 1998). More recently,
Lie et al. (2004) found significant negative
relationships between high blood levels of
PCBs and serum immunoglobulins against a
range of pathogens in polar bears (Ursus
maritimus) and a significant negative relation-
ship between PCB exposure (blood levels of
32-89 ng/g wet weight) and cell-mediated
immunity (Lie et al. 2005).
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The most comprehensive study of the
effects of POPs on immunity in marine mam-
mals involved captive seals (De Swart et al.
1994). Two groups of harbor seals were fed
herring from the relatively unpolluted Adantic
and from a highly polluted region of the Baltic
Sea. De Swart et al. (1994) and Ross et al.
(1996) reported negative effects on natural
killer cell activity (important in viral defense)
and on T-cell mitogen-induced proliferation.
In addition, higher circulating levels of poly-
morphonuclear cells were found in animals fed
contaminated fish, suggesting an increase in
bacterial infections. Ross et al. (1995) also
found that contaminant-fed seals were less able
to mount a specific immune response to oval-
bumin. These authors reported the contami-
nant concentrations in the blubber of the two
groups at the end of the study as toxic equiva-
lents (TEQs), making it difficult to compare
the results with other published studies and to
infer which groups of contaminants are likely
to be responsible for the observed effects.
However, reductions in proliferative responses
to mitogens have been associated with aryl
hydrocarbon receptor (AhR) binding (the
binding of contaminants to this soluble cytoso-
lic protein is particularly important in thymus-
dependent immune effects) (Safe 1994; Vos
etal. 1997), and up to 93% of the AhR-active
compounds in the blubber of the seals were
PCBs, whereas other potentially immunotoxic
compounds such as polychlorinated dibenzo-p-
dioxins, polychlorinated dibenzofurans, DDT,
butyltins, and mercury were found in much
smaller proportions, suggesting that immuno-
suppressive effects were likely to be largely due
to PCBs. Kannan et al. (2000) used these
results and information published by Boon
et al. (1987) and Brouwer et al. (1989) to con-
vert the daily intake of PCBs in the diet to an
estimated blood level, thus approximating a
lowest observed adverse effect level (LOAEL)
for PCB effects on immunity of 16 ng/g wet
weight in seal blood. They also approximated a
PCB LOAEL (from Lahvis et al. 1995) for dol-
phins of 26 ng/g wet weight in blood, slightly
higher than for the seals.

Small cetaceans in particular may have a
lower capacity to metabolize PCBs (Tanabe
et al. 1988). Based on their blubber PCB con-
gener patterns, Tanabe et al. (1988) hypothe-
sized that cetaceans do not possess a group of
cytochrome P450 enzymes (known as CYP2B
isoenzymes) responsible for the oxidation and
activation of halogenated aromatic hydrocar-
bons, suggesting that these species accumulate
some of the toxic PCB congeners and are
therefore more susceptible to their long-term
effects (Boon et al. 2001; Goksayr et al.
1986). However, more recent studies have
identified immunoreactive proteins recognized
by heterologous CYP2B antibodies in a variety
of cetacean species (Goksoyr 1995; White

et al. 1994), including the harbor porpoise
(Hummert et al. 1995), and CYP1B-like amino
acid sequences from striped dolphin cDNA
have also now been reported (Godard et al.
2000). This perhaps now questions the sugges-
tion that small cetaceans in particular are more
sensitive to the effects of exposure to POPs.
Attention has continued to focus on the
harbor porpoise because high levels of conta-
minants have been extensively reported in this
species (for review, see Aguilar et al. 2002;
O’Shea 1999; Reijnders et al. 1999). In addi-
tion to the high by-catch rates sustained by
some populations (Kock and Benke 1996;
Trippel et al. 1999), any additional anthro-
pogenic effects on a population could jeopar-
dize its long-term survival. Specific studies on
harbor porpoises have found higher occur-
rences of infectious disease in those stranded
around European coasts than in less-contami-
nated Arctic waters (Baker and Martin, 1992;
Jauniaux et al. 2002; Jepson et al. 2000;
Siebert et al. 2001; Wiinschmann et al. 2001).
In addition, Beineke et al. (2005) found blub-
ber PCBs (but not DDT) to be significantly
correlated with thymic atrophy and splenic
depletion in 61 harbor porpoises stranded in
the German North and Baltic seas.
Case—control studies are defined as those
in which subjects are selected according to
their disease status and further classified
according to their exposure status (Rothman
and Greenland 1998). If the exposure variable
is dichotomous, the simple analysis of case—
control data yields a cross-product ratio,
which is equivalent to the odds of being
exposed among the cases divided by the odds
of being exposed among the controls [the
exposure odds ratio (OR)]. Cases and controls
can be randomly selected from a defined
source population, provided the sampling is
independent of the exposure being studied.
Appropriate control selection is important to
prevent bias in the OR estimates. Controls
should be selected from the same population
that gave rise to the cases and independently
of their exposure status, because they represent
the source population exposure (Smith et al.
1988). For unmatched control selection, the
number of exposed and unexposed controls
should be in proportion to the amount of
exposed and unexposed “animal-time” in the
source population. “Animal-time” (analogous
to person-time in human studies) represents
the average size of the population over the
length of the time period being studied. In
addition, the time during which a subject is
eligible to be a control should be the time in
which that individual is also eligible to become
a case, if the disease had occurred. Because the
controls should represent the source popula-
tion for the cases, the definition of the source
population will assist in identifying the
controls. For our study, the source population
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is defined as the harbor porpoise population in
U.K. waters between 1989 and 2002.

Although case—control studies still do not
provide causational links between exposure and
response, they can provide estimates of average
risk (defined as the probability of disease devel-
oping in an individual in a specified time
period) as estimated by ORs for given expo-
sures > 1. The effect of other variables (con-
founding factors) on the relationship between
exposure and response can be determined
using logistic regression. In this study, we used
data obtained from the U.K. cetacean strand-
ings scheme [Department of the Environment,
Transport and the Regions (DETR) 2000a,
2000b; Jepson et al. 2005]. Harbor porpoises
are the most commonly stranded cetacean in
U.K. waters (DETR 2000a, 2000b), and previ-
ous studies on both subsets of the data from
this scheme (Jepson et al. 1999) and the com-
plete data set to date, as used here (Jepson et al.
2005), have found associations between blub-
ber PCB concentrations and death from infec-
tious diseases. Here, we apply the classical
case—control approach and use logistic regres-
sion to control for confounding factors, to
approximate the relative risk of PCB exposure
on this population of cetaceans and discuss the
validity of using epidemiologic study methods
to determine potential population-level effects
of contaminant exposure in wildlife.

Materials and Methods

Details of the harbor porpoise strandings data
used in this study have been reported previ-
ously (Jepson et al. 2005) and are summarized
here. Between July 1989 and December 2002,
1,061 harbor porpoise carcasses stranded in
the United Kingdom or caught in commercial
fishing nets were necropsied. Detailed patho-
logic studies were carried out and diagnoses of
cause of death determined. Blubber samples
were collected from 340 individuals and ana-
lyzed for 25 PCB congeners [International
Union of Pure and Applied Chemistry
(IUPAC) congeners 18, 28, 31, 44, 47, 49,
52, 66, 101, 105, 110, 118, 128, 138, 141,
149, 151, 153, 156, 158, 170, 180, 183, 187,
and 194]. The sum of the PCB concentrations
(X25PCB) was converted to a lipid weight
basis (milligrams per kilogram lipid) using the
proportion of hexane-extractable lipid in the
blubber. In order to compare our findings
with published studies on blubber PCB con-
centrations at which adverse effects might be
expected (e.g., the LOAEL from Kannan et al.
2000), we also estimated the blubber PCB
concentrations based on the commercial for-
mulation Aroclor 1254. We used a conversion
factor of 3 X sum of seven congeners (IUPAC
congeners 28, 52, 101, 118, 138, 156, and
180) identified by ICES (International
Council for the Exploration of the Sea), as
described by Jepson et al. (2005). Samples
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were analyzed at the Centre for Environment,
Fisheries and Aquaculture Science Laboratory
by gas chromatography with electron-capture
detection. The methods incorporate full ana-
lytical quality-control protocols involving the
analysis of blanks and reference materials
within each batch of samples and the prepara-
tion of control charts, and have been further
validated by participation in the QUASI-
MEME (Quality Assurance of Information for
Marine Environmental Monitoring in Europe)
laboratory proficiency scheme (de Boer and
Wells 1997; Wells and de Boer 1994).

Cases were defined as animals that died of
an infectious disease (parasitic, bacterial, viral,
or mycotic, 7 = 75), and controls as those that
died because of acute physical trauma, by-
catch, or dystocia (7 = 161). Because the
underlying purpose of controls is to deter-
mine the prevalence of past exposure among
the catchment population that generated the

Table 1. Number of harbor porpoises by cause of
death category among the cases and controls.

Cause of death No.

Cases
Pneumonia, parasitic 2
Pneumonia, bacterial
Pneumonia, fungal
Pneumonia, mixed pathogens
Pneumonia, unknown cause
Generalized bacterial infection
Gastritis/enteritis
Generalized viral infection
Meningo-encephalitis
Other infection (e.g., myositis, otitis media)
Controls
By-catch 126
Physical trauma 29
Dystocia

N
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cases, the controls were a sample from the
same population. Table 1 shows the numbers
of animals in each of the causes of death
categories.

Of the 236 individuals included in the
study, 176 were found stranded and 60 were
by-catches obtained directly from fishing ves-
sels. The remaining by-caught animals were
stranded and subsequently diagnosed as by-
catch deaths at postmortem examination.
Animals with evidence of acute physical
trauma but whose cause of death was clearly
infectious disease were included in the cases.
Those whose cause of death could not be
determined were excluded from the study. Of
the 236 individuals examined, 152 were
freshly dead and 84 were slightly decomposed.
The number of samples stratified by age and
sex are shown in Table 2.

Age was determined for 221 individuals by
counting growth-layer groups from decalcified
tooth sections (Lockyer et al. 2001). For
15 sexually immature animals, age was esti-
mated from body length: < 105 cm, < 1 year;
105-120 cm, 1 year; 121-130 cm, 2 years;
> 131 cm, 2 3 years. Energetic status (termed
relative body weight) was estimated using the
residuals around the best-fit linear regression
between In(body weight) and In(body length).
Animals were also categorized into two seasons
based on their date of stranding: October—
March and April-September. In addition, six
regional areas were identified: southwest
England (# = 27), east coast of England
(n =92), Wales and northwest England
(n = 73), English Channel (7 = 5), Scotland
(7= 36), and Ireland (7 = 3).

ORs with 95% confidence intervals (Cls)
using logistic regression analyses were calculated

Table 2. Total number of harbor porpoise cases and controls stratified by sex and age class.

Adults Immatures Unknown
Male Female Male Female ~ Male  Female  Total
Cases (infectious disease deaths) 17 19 17 22 0 0 75
Controls (physical trauma deaths) 38 22 59 M 0 1 161
Total 55 4 76 63 0 15 236

[ Controls
100 I [ Cases
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Figure 1. Frequency distribution of X25PCBs in the

blubber of harbor porpoises selected as cases or
controls.
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Figure 2. Geometric mean X25PCBs (geometric
95% Cl) in the blubber of harbor porpoises for
cases and controls.

using R Statistical Package (R Development
Core Team 2004) and SPSS version 12.0
(SPSS Inc., Chicago, IL, USA).

Results

The frequency distributions of the concentra-
tions of £25PCB in the blubber of harbor
porpoises selected as cases or controls are
shown in Figure 1. The group geometric
mean X25PCB with geometric 95% Cls for
the cases and controls are shown in Figure 2.
The PCB levels in the cases were significantly
higher than in the controls (Welch two-sam-
ple #test with unequal variances on log trans-
formed concentrations, p < 0.0001).

Energetic status is an important confound-
ing factor not controlled for in this crude
analysis. Relative body weight was signifi-
cantly lower in the cases than in the controls
(Figure 3; Kruskal-Wallis x* = 52.79,
2 <0.0001), and this difference must be con-
trolled for in any subsequent analysis. Using a
stepwise logistic regression (generalized linear
binomial model with a logit link function) to
investigate the effect of other factors on cause
of death, there was evidence for age, sex,
regional, and seasonal confounding (Table 3).
Energetic status was the most important factor
in predicting the cause of death, with regional
and seasonal differences (analysis of deviance,
chi-square test for differences between models,
terms added sequentially, p < 0.05). A step-
wise regression using Akiake’s information cri-
terion (AIC) to determine the best model
given the data suggested that sex should also
be retained in the model. There was no signifi-
cant interaction between variables. Analysis of
the residual deviances suggested that the
model was a good fit to the data, and a
Hosmer-Lemeshow goodness-of-fit test, in
which large values of %2 and small p-values
indicate a lack of fit of the model, was not sig-
nificant (% = 7.71, p = 0.462). After adjusting
for the effect of these confounding variables,
>25PCB remained a highly significant predic-
tor of cause of death.

04

0.2

0.0

Relative body weight (kg)

T T
Cases Controls

Figure 3. Relative body weight of harbor porpoises
[residuals around the best-fit linear regression
between In(body mass) and In(body length)] among
the cases and controls. Values shown are median,
25th—75th percentiles, and minimum—maximum.
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This logistic regression model (model 1)
was then used to estimate the exposure OR
and its 95% CI, comparing £25PCB in the
blubber of the cases and controls and control-
ling for the effect of energetic status, sex, age,
region, and season. The OR was 1.048 (95%
ClI, 1.02-1.07). These limits do not include
the null (1.00) and indicate a slightly higher
risk of infectious disease death in harbor por-
poises for a 1 mg/kg increase in blubber
>25PCBs; that is, the odds that an animal
will die of infectious disease is 4.8% higher
for each unit increase in blubber X25PCBs
over that of the controls. This is a small unit
increase, given the range of exposures and
concentrations measured in the porpoises,
and may not be the same for a 1-2 mg/kg dif-
ference as for a 10-11 mg/kg increase.
Table 4 shows the adjusted ORs from this
model for differences of blubber X25PCBs of
between 5 and 60 mg/kg lipid weight, con-
trolling for the confounders. Thus, for a dif-
ference of 10 mg/kg, the OR increases to
approximately 1.6 (95% CI, 1.56-1.64),
which indicates a 60% increase in the risk of
infectious disease death.

Because the harbor porpoises that died of
infectious disease (cases) had significantly less
blubber than those that died of physical
trauma (controls), we further investigated the
confounding effect of energetic status in our
model. Data on total blubber mass (kilograms;
from sculp weights) were available for

156 harbor porpoises stranded in the United
Kingdom between 1981 and 1987 in addition
to sex, total body mass, length, and axillary
girth. These four independent variables were
then used in a stepwise least-squares linear
regression model to determine whether they
were good predictors of total blubber mass.
The model selection using AIC found that all
variables should be retained and the predictive
power of the model was good (R* = 0.84,
2 < 0.0001). The resulting model equation
allowed us to then estimate the total amount
of blubber for each animal (where males = 1
and females = 0) as follows:

Estimated total blubber mass (kg)
=0.35 + [0.17 X mass (kg)]
—[0.05 x length (cm)]
+[0.14 X girth (cm)] — [1.0 X sex].

The frequency distribution of the estimated
blubber masses as a percentage of total body
mass is shown in Figure 4. These estimates are
in line with published data for harbor por-
poises where blubber mass was reported to be
between 15 and 55% of total body mass
(Koopman et al. 2002; McLellan et al. 2002).
The best-fit least-squares regression equation
from the relationship between In(mass) and
In(length), as shown in Figure 5, was then
used to determine a predicted total body mass
for each individual. This standardized the

study animals to a population mean for a

Table 3. Analysis of deviance table from the relationship between cause of death (infectious disease and
physical trauma) and potential confounding factors using stepwise logistic regression (binomial model

with a logit link function).

Potential Residual Residual

confounding factor df Deviance df deviance p-Value
Energetic status 1 52.65 229 237.1 <0.0001
Sex 1 2.75 228 2343 0.097
Region 5 16.26 223 218.1 0.006
Season 1 9.04 222 209.0 0.003
25PCB 1 16.32 221 192.7 <0.0001
df, degrees of freedom. Terms were added sequentially, first to last.

Table 4. Adjusted ORs for risk of infectious disease

death in harbor porpoises for differences of stan- [ Controls
dardized blubber X25PCB between 5 and 60 mg/kg I Cases
lipid weight from model 1. 80

Difference OR

in X25PCB (XPCB; — ZPCBg)? 95% Cl Z 60

5 1.265 1.234-1.297 §

10 1.601 1.561-1.641 8 "

15 2.025 1.976-2.076 =

20 2.563 2.500-2.627

25 3.242 3.163-3.324 2

30 4102 4.001-4.205

35 5.190 5.063-5.321 D

: A T TIIsTRTIIT
50 10:512 10:254_1‘0.777 0 .5 10 15 20 25 30 35 40 45 50 55 60 65
55 13.300 12.973-13.635 Estimated blubber mass (% of total body mass)
60 16.827 16.414-17.251

aAdjusted for energetic status, sex, region, and season.
ZPCB;, exposed; ZPCBy, unexposed.

Figure 4. Frequency distribution of estimated blub-
ber mass in harbor porpoises as a percentage of
total body mass.
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given length. Thus, assuming that the decrease
in total body mass in nutritionally stressed
animals was a consequence of blubber deple-
tion (Koopman et al. 2002) and that any cont-
aminants in the blubber are then concentrated
in the remaining fat layer, we can estimate
what the concentration of PCBs in the blubber
would have been if the animals had been in
optimal body condition for their size. This was
carried out by calculating a “standardized”
blubber mass for each individual as follows:

Standardized blubber mass
= (predicted body mass — actual body mass)
+ estimated total blubber mass.

Finally a standardized concentration of
225PCB (mg/kg lipid) was estimated as

Standardized concentration of £25PCB
(mg/kg lipid) = (estimated total blubber mass
+ standardized blubber mass)

X concentration Z25PCB (mg/kg lipid).

Table 5 shows the results from the second
logistic regression model, again with cause of
death as the dependent variable, but this time
including the standardized X25PCB concen-
tration as an independent variable, in addition
to the other confounder factors (sex, region,
and season). £25PCBs remained a significant
factor in predicting cause of death (p = 0.025),
although the level of significance was lower,
after accounting for the effect of the other
potential confounders. In addition, sex was
now significant (p = 0.036) in this model. The
resulting OR was lower than in the first model
at 1.02 (95% CI, 1.00-1.03). Again, the CI
did not include the null but suggested a
slightly lower risk of infectious disease death
(2% for a 1 mg/kg increase in blubber
225PCBs). Table 6 shows the adjusted ORs
for differences of blubber £25PCBs between 5
and 60 mg/kg lipid using this model
(model 2). For a difference of 10 mg/kg, the

In(body mass) (kg)

42 44 45 48 50 5.2
In(length) (cm)
Figure 5. Relationship between In(body mass) and
In(body length) in harbor porpoises. Line shows

best-fit, least-squares linear regression model
[In(mass, kg) =-9.0 + 2.57 xIn(length, cm)].
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OR is now 1.18 (an 18% increase in risk; 95%
CI, 1.16-1.2). A 50% increase in risk does not
occur until differences in blubber X25PCBs
reach approximately 25 mg/kg lipid, and a
doubling of risk occurs at approximately
45 mg/kg lipid.

In order to compare our results with the
published LOAELSs for marine mammals, we
repeated the model 2 analysis, which gave us
the most conservative OR estimates, using the
Aroclor 1254 equivalents as the concentration
of PCBs in blubber. On this basis, a 50%
increase in risk occurs at around 45 mg/kg,
and a 2-fold increase at around 80 mg/kg.

Discussion

This is the first study to quantify the risk of
infectious disease in relation to exposure to
PCBs in a marine mammal using a classical
case—control approach. This epidemiologic
approach estimates the average risk of the out-
come of interest (infectious disease mortality)
at the population level. Our aim was to deter-
mine whether observations from one popula-
tion indicated whether, on average, the risk of
infection was higher with increasing PCB
exposure, and indeed our results do support
this hypothesis. It should be noted that the
resulting risk estimates may not be applicable
to all individuals within the population or,
indeed, to different pathogen exposures.

If harbor porpoises that die of infectious
disease are more likely to be washed ashore
and reported than are those that die from
other causes, this would produce bias in the
OR estimates. Unfortunately, this is a diffi-
cult phenomenon to test empirically, and we
can only assume that reporting rates are not
related to cause of death. In addition, if the
controls included animals whose cause of
death was related to exposure (i.e., animals
with high PCBs are more likely to die of
physical trauma), then this would bias the
OR downward. However, the bias could also
be in the opposite direction. If the control
group underestimates the exposure in the
source population, then this will overestimate
the OR. Perhaps animals that died of physical
trauma were less likely to be exposed to PCBs.
Avoiding such selection bias continues to be a
challenge for epidemiologists (Flanders and
Austin 1986; Goldstein et al. 1989; Lin and
Paik 2001; Smith et al. 1988; Sutton-Tyrrell

1991), and although we have endeavored to
choose controls independently of their
exposure status, we cannot rule out the effects
of such selection biases on our results.

There are also some pitfalls in equating
ORs to relative risks. The risk (or probability)
of an event (or disease) occurring in a speci-
fied period of time is very difficult to measure
in many situations, particularly for wildlife,
whereas the odds of an event (calculated as
the number of events divided by the number
of nonevents), as demonstrated in this study,
are quite tangible. Although ORs do not
approximate well to the relative risk when the
initial risk (i.e., the prevalence of the outcome
of interest) is high (Davies et al. 1998), when
the initial risk is lower (as in this study), odds
and risks are very similar (see Deeks 1996).

In addition, other environmental contami-
nants are correlated with concentrations of
PCBs in the blubber of harbor porpoises
(Kuiken et al. 1994). These include DDT and
its metabolites, organochlorine pesticides, and
mercury. These contaminants were also meas-
ured in the blubber of the harbor porpoises
included in this study (Jepson 2003). On aver-
age, X25PCBs made up 62% of the total
contaminant concentrations in the blubber,
with DDT accounting only for a further 18%.
In addition, hepatic total butyltins and mer-
cury concentrations were measured, but these
were not related to cause of death (Jepson
2003). If other contaminants are accounting
for the relationships observed, then these
would have to be highly correlated with blub-
ber X25PCBs. PCBs have been demonstrated
in a wide variety of species to be the most
immunotoxic of the POPs measured, exerting
effects through AhR-dependent and AhR-
independent pathways (Silkworth et al. 1984;
Smithwick 2003). Because PCBs dominate
the blubber contaminant profiles and recent
studies have shown that PCBs alone are
immunotoxic to harbor seals (Hammond et al.
2005), we have inferred that PCB exposure is
the most probable candidate for increasing the
risk of infection in this species. However, it is
quite plausible that effects are in fact due to
the mixture of contaminants to which these
animals are exposed and not a consequence of
exposure to PCBs alone.

A problem to overcome in this analysis was
the potential confounding effect of energetic

Table 5. Analysis of deviance from the relationship between cause of death (infectious disease and physi-
cal trauma) and potential confounding factors including standardized £25PCB (mg/kg lipid weight) as a
dependent variable (binomial model with a logit link function).

Potential Residual Residual

confounding factor df Deviance df deviance p-Value
Sex 1 440 222 2754 0.036
Region 5 20.86 217 2545 0.001

Season 1 7.88 216 246.7 0.005
Standardized 25PCB 1 499 215 2147 0.025

df, degrees of freedom. Terms were added sequentially, first to last.
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status in the cases. We took two approaches to
investigate this. The first was to include ener-
getic status and other potential confounding
variables as covariates in the logistic regression
model. Because PCB concentrations are
known to be associated with blubber thickness
in marine mammals (Aguilar and Borrell
1994a) and the cases and controls as sampled
had different distributions of energetic status
(used as a surrogate for blubber mass), includ-
ing this in the model as a covariate allowed the
sample means for each group to be adjusted to
determine whether the findings were solely
attributable to the fact that the cases in the
sample had a lower energetic status than did
the controls. After controlling for this differ-
ence, the cause of death was still significantly
predicted by blubber PCB concentrations. In
addition to this approach, we also adjusted the
blubber PCB concentrations to a “standard-
ized” concentration based on predicting what
each animals’ blubber level would have been if
it had been in optimal condition. This
method indicated that blubber PCBs
remained significant predictors of cause of
death but resulted in lower ORs to estimate
the risk of infectious disease death after PCB
exposure. Clearly, there are considerable areas
of uncertainty in using this second approach
because the added error from estimating stan-
dardized concentrations was not accounted
for. In addition, the elevation in contaminant
concentrations is perhaps not as high as a
purely concentrative model would suggest
(Aguilar et al. 1999). However, by using both
approaches, we would still infer that the risk of
infection is more likely to be due to PCB
exposure than because emaciated animals had
higher blubber PCB levels.

We have shown that the risk of death from
infectious disease in harbor porpoises is associ-
ated with increasing PCB exposure, but fur-
ther research is necessary to ascertain whether
this relationship is causal. Most of the PCBs
stored in the blubber of marine mammals are

Table 6. Adjusted ORs for risk of infectious disease
death in harbor porpoises for differences of stan-
dardized blubber X25PCB between 5 and 60 mg/kg
lipid weight from model 2.

Difference in OR

>25PCB (2PCBy — 2PCBg)? 95% Cl

5 1.087 1.071-1.103
10 1.181 1.164-1.198
15 1.283 1.264-1.302
20 1.394 1.374-1.415
25 1.515 1.493-1.538
30 1.646 1.622-1.671
35 1.789 1.763-1.816
40 1.944 1.916-1.973
45 2.113 2.082-2.144
50 2.296 2.262-2.330
55 2.495 2.458-2.532
60 2711 2.671-2.751

aAdjusted for sex, region, and season. ZPCB;, exposed;
ZPCBy, unexposed.

VOLUME 114 | NumBEr 5 | May 2006 < Environmental Health Perspectives



PCBs in the harbor porpoise: a case—control study

a legacy from the mother transferred during
lactation (Hickie et al. 1999) rather than
direct uptake from prey. Using the conserva-
tive estimates from our models, the increased
risk of infectious disease death is high (> 2.0)
when differences of 225PCB exceed 45 mg/kg
lipid weight. The LOAEL in marine mammals
calculated by Kannan et al. (2000), based on
diverse primary data sources, was 17 mg/kg
lipid based on total PCBs as the sum of
42 congeners (Boon et al. 1987). Although the
results of our study are therefore not directly
comparable with this value (representing a
guide level rather than any absolute threshold)
because the total PCBs were estimated using
slightly different methods, it provides an indi-
cation of an approximate threshold level for
effects determined by others. Again, using the
conservative OR estimates, our study found
that a 2-fold increase risk of infectious disease
death does not occur until concentrations
exceed 80 mg/kg lipid Aroclor 1254 equiva-
lent. These levels are also higher than the
above threshold value because the toxicity end
points measured here are the most extreme,
that is, mortality from infection. Kannan et al.
(2000) were estimating effect levels for
responses at the lower end of the physiologic
range, such as disruption of vitamin A and
thyroid hormone concentrations, suppression
of natural killer cell activity, and reduced pro-
liferative responses of lymphocytes to mito-
gens. These end points are at the sublethal end
of the range of toxic effects and will impair the
health of the animal, causing morbidity.
Although we do not have good dose-response
data for immune function effects in marine
mammals, the published data do indicate that
effects are more severe as exposures increase
(Hammond et al. 2005; Lahvis et al. 1995).
Thus, at the highest exposure levels, effects on
both innate and acquired immunity and,
indeed, on cell-mediated and humoral func-
tions could result in more severe immunosup-
pression and premature mortality from
infection after pathogen exposure.

Beineke et al. (2004) optimized lympho-
cyte-transformation assays and investigated
cytokines using polymerase chain reaction in
harbor porpoises, but suppression of these
responses after PCB exposure has not yet been
reported. Extrapolating from effects on other
marine mammal species and the assumption
that the increased risk of infectious disease in
relation to blubber PCB levels is mediated
through effects on immunity may be flawed.
Indeed, seal species appear to vary consider-
ably in their susceptibility to effects of PCBs
on innate immunity: gray seals (Halichoerus
grypus) appear to be much more resistant to
exposure than harbor seals (Hammond et al.
2005). Using our ORs to assess the risk of
infectious disease after exposure to PCBs in
other marine mammal species would also be

inappropriate. Until more detailed data on
immune function effects of PCBs in harbor
porpoises are available, our results should be
interpreted in this light. With this caveat in
mind, we can investigate which other popula-
tions of harbor porpoises outside the North
Sea are likely to be at increased risk. Examples
from published studies that report comparable
data include animals incidentally caught in
Scandinavian (Danish and Norwegian) waters
between 1987 and 1991, in which total blub-
ber PCBs ranged from 4 to 65 mg/kg lipid
weight, with a median of 20 mg/kg (Kleivane
et al. 1995). Three animals from the Baltic Sea
sampled between 1989 and 1990 had levels of
26-47 mg/kg lipid (Falandysz et al. 1994).
In the Black Sea, blubber PCB levels in
10 harbor porpoises sampled in 1993 ranged
from 3 to 39 mg/kg lipid weight (Tanabe
et al. 1997). PCBs in the blubber of 45 har-
bor porpoises from the coasts of Washington,
Oregon, and California in the United States in
the mid-1980s ranged from 2 to 129 mg/kg
lipid weight (Calambokidis et al. 1984).
Jarman et al. (1996) found levels of PCBs in
harbor porpoises from British Columbia
(7 =6, 1987-1989) of 5-17 mg/kg lipid
weight, whereas animals from the California
coast (7 = 3) had levels of 4.5-42 mg/kg lipid
weight. All of these populations are therefore
likely to include some individuals with blub-
ber levels sufficiendy high (> 25 mg/kg lipid)
to have an increased risk of infection.
Although most of these studies relate to the
late 1980s, we found no significant decline in
PCBs in North Sea harbor porpoises since this
time (Jepson 2003). In contrast, harbor por-
poises from the Greenland population [total
blubber PCBs < 5 mg/kg lipid; n = 177;
1986-1988 (Borrell et al. 1999, 2004; Granby
and Kinze 1991)], the Canadian northeast
Pacific [< 10 mg/kg lipid; 7 = 6; 1987 (Aguilar
et al. 2002)], and those around the Faroe
Islands (total blubber PCBs 8—13 mg/kg lipid;
n=6;1987-1988 (Borrell 1993)] do not have
a significantly increased risk.

In an ecologic context, it is often impracti-
cal to determine the incidence of infection in
an unexposed population. If the background
incidence rate is negligible, then a doubling of
the risk is still negligible and thus unlikely to
be important at the population level. Although
the background incidence rate is not quantifi-
able for harbor porpoises, a precautionary
approach would warn that high exposure levels
might cause significant excess mortality.
Although the production and use of PCBs in
Europe have been banned since the 1980s
(Smith and Gangolli 2002), substantial
amounts of PCBs are still in use, largely
because of the long service life of PCB-contain-
ing equipment such as large transformers and
capacitors. There are also considerable quanti-
ties of PCBs in storage awaiting disposal. Thus,
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the exposure of long-lived marine mammals to
these chemicals worldwide is likely to continue.
Our results could also be used in further risk
assessment models for population-level effects
where dose-response data are difficult to
obtain for free-living marine mammals such as
the harbor porpoise.

The approach we have taken has not been
widely used in ecotoxicologic studies, despite
its potential power and relevance. We have
demonstrated the general applicability of the
case—control approach for studies using
marine mammal strandings data. Only such
long-term schemes can provide suitable data,
and this study illustrates the need for their
continuation into the future.
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